
 

Delphi Informant 
Features 
Case Studies 
News 
New Products 
Book Reviews 
Product Reviews 
Opinion 
Back Issues 
Search 

Downloads 
Article files 
Third-party files 
Upload a File 

FREE Trial Issue 
New Subscription 
Renew Subscription 
Delphi CD-ROM 
Report Problems 
Change of Address 

Seminars 
Delphi Development
Seminars NEW! 

Informant 
ICG News 
Contact Us 
Advertise with Us 
Write for Us 

 

 
���������
	 ����
 ���
� � � � � � � � � � � �
  

By Cary Jensen, Ph.D.

  

�����! #"%$#&('*),+.-!'
/���0�1�23&*4!"%$#1!�
An Introduction to Delphi’s Undocumented
RTTI

  

This article provides an introduction to run-time type information
(RTTI), which is information the Delphi compiler stores in the code
segment of your compiled project. This information is associated
with published properties of a class, and it provides a mechanism
for treating the symbolic information associated with your types as
strings. One example of how RTTI impacts your everyday use of
Delphi is the Object Inspector. The Object Inspector displays the
names of published properties. This information is retrieved using
RTTI.

  

Delphi ships with a unit, named typinfo.pas, that contains the RTTI
functions and procedures, as well as type declarations used by
these functions. By adding this unit to your unit’s uses clause, you
can call these functions to access RTTI. At a minimum, you should
consider taking a look at the typinfo.pas file in Delphi’s \Source\VCL
directory.

  

This article demonstrates several uses of RTTI. One note of caution
is in order, however. Borland has specifically not documented the
typinfo unit, and reserves the right to change it in any new release of
Delphi. It is essential that Borland maintain this right, since the RTTI
features are critical to the operation of Delphi itself. As a result, it’s
possible that if you use RTTI in your application, subsequent
changes to the typinfo unit in a new version of Delphi will require
you to make modifications to your programs if you want to recompile
them under the new version.

  576 8 8 9 :<;�=?><>A@ B CEDGFE:EHJIK6 D L 8 6 MN><O<PJ6 Q

Enumerated types are used throughout Delphi. An example of this is
the TCommonAvi enumerated type, which declares the valid values
for the CommonAVI property of an Animate control. The following is
the TCommonAvi declaration from Delphi 3’s comctrls unit:

  

type TCommonAVI = (aviNone, aviFindFolder, aviFindFile,

 

Delphi Development
Seminars 

April 17-21, CA,
May 22-26, Wash. DC
REGISTER TODAY! 

More By This Author 
 • Interfaces Revisited :

Part II: Interface
References versus
Object References 

 • Interfaces Revisited: Part
I : Declarations,
Implementation, and
Method Name
Resolution 

 • Delphi Frames :
Understanding Delphi 5’s
New Visual Container
Class 

 • The Data Module
Designer : Delphi 5’s Gift
to Database
Programmers 

 • Delphi 5 : A First Look at
the New Features 

Latest Features 
 • Delphi in the Office 

 • Parsing the Web 

 • TChart Actions 

 • CORBA: Part II 

 • Interfaces Revisited 

Article Rating
Rate this article on a

scale from 0 to 5

5 Best

4  

3  

2  

1  

0 Worst

Email

Tell a friend
about this article!

Submit

1 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp



type TCommonAVI = (aviNone, aviFindFolder, aviFindFile,
  aviFindComputer, aviCopyFiles, aviCopyFile, 
aviRecycleFile, aviEmptyRecycle, aviDeleteFile);

  

RTTI permits you to do two things with enumerated types. You can retrieve strings that contain
the name of each value in the enumerated type, and you can identify the ordinal position within
the enumerated type of one of its valid values using a string representation of the value.

  

You obtain a string equivalent of an enumerated type value using the GetEnumName function:

  

function GetEnumName(TypeInfo: PTypeInfo;
                     Value: Integer): string;

  

The first argument is a pointer to the enumerated type’s RTTI information, and the second
argument is the ordinal position of the value within the enumerated type. GetEnumName returns
a string representing the corresponding enumerated type value.

  

You get the ordinal position of an enumerated type value based on a string using the
GetEnumValue function:

  

function GetEnumValue(TypeInfo: PTypeInfo; 
  const Name: string): Integer;

  

Like GetEnumName, the first argument is a pointer to the RTTI information. The second
argument is a string that represents the enumerated type value. This function returns the ordinal
position of the corresponding value.

  

The relationship between these two function calls is demonstrated with the following code
segment:

  

var
  s: string;
  i: Integer;
begin
  s := GetEnumName(TypeInfo(TCommonAvi),3);
// Displays aviFindComputer. 
  ShowMessage(s);
  i := GetEnumValue(TypeInfo(TCommonAvi),s);
// Displays 3. 
  ShowMessage(IntToStr(i));

  

As mentioned, these functions require a pointer to the RTTI for an enumerated type. Since the
pointer for a particular type may change from one version of Delphi to another, you must use the
TypeInfo function to retrieve this information. TypeInfo takes a single argument, the type of the
enumerated type whose RTTI pointer you want to return:

  

function TypeInfo(TypeIdent): Pointer;

  

The use of these functions is demonstrated in the ANIMATE project, which also demonstrates
the use of the Animate component from the Win32 page of the component palette. (This project,
and the other demonstration projects discussed in this article, are available on diskette and for

about this article!

2 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp



download; see end of article for details.) Figure 1 shows the main form of this project as it might
appear while running. There’s a ComboBox that lists the various valid values for the
TAnimate.CommonAVI property. In most applications, you would have populated this
ComboBox using its Items property at design time.

  

Figure 1: The TCommonAVI values displayed in the ComboBox are discovered at run time
using RTTI.

  

In this project however, the ComboBox is loaded dynamically from RTTI using the
GetEnumName function from within the form’s OnCreate event handler (see Figure 2). A for
loop iterates through the TCommonAvi enumerated type. For each ordinal position, the
GetEnumName function is called, and the returned value is added to the ComboBox’s Items
property.

  

procedure TForm1.FormCreate(Sender: TObject);
var
  ca: TCommonAvi;
begin
// For each value of the TCommonAVI enumerated type. 
for ca := Low(TCommonAvi) to High(TCommonAvi) do
    // Get string equivalent of the enumerated type value. 
    ComboBox1.Items.Add(GetEnumName(TypeInfo(TCommonAvi),
                        Ord(ca)));
// Initialize ComboBox to the first item in the list. 
  ComboBox1.ItemIndex := 0;
end;

Figure 2: The ComboBox is loaded dynamically from RTTI using the GetEnumName function
from within the form’s OnCreate event handler.

  

RTTI is used again to assign the value selected in the ComboBox to the Animate’s CommonAVI
property. This is performed from the ComboBox’s OnChange event handler, shown in Figure 3.
This code includes an additional step for the purpose of clarity. Specifically, the value returned
by GetEnumValue is assigned to an intermediate variable named ValueOrd. This variable is
then cast as a TCommonAVI type. Instead of using the variable ValueOrd, the value returned by
the GetEnumValue could have been cast directly, permitting these two steps to be represented
by a single statement.

  

procedure TForm1.ComboBox1Change(Sender: TObject);
var
  ValueOrd: Integer;
begin
if Animate1.Active then
    begin
      Button1.Caption := ’&Start’;
      Animate1.Stop;
    end;
// Get the ordinal position of the value associated
// with the selected string in the ComboBox. 
  ValueOrd := GetEnumValue(TypeInfo(TCommonAvi),
                ComboBox1.Items[ComboBox1.ItemIndex]);
// Cast this ordinal value to the TCommonAVI type. 
  Animate1.CommonAVI := TCommonAVI(ValueOrd);
end;

3 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp



Figure 3: Assigning a value to the Animate component’s CommonAVI property using the
ComboBox’s OnChange event handler.

  576 8 8 9 :<;KRTS U 6 V 8AWED CEP<6 D 8 O�X<9 Q 8 9 :<;<Q

As you learned earlier, it’s possible to get the names of published properties using RTTI. This is
done by populating a PPropList using a call to GetPropList:

  

function GetPropList(TypeInfo: PTypeInfo; 
  TypeKinds: TTypeKinds; PropList: PPropList): Integer;

  

A PPropList is an array of TPropInfo records, and each record holds information about a
particular property. This record includes fields such as Name and PropType. The first argument
is the TypeInfo. Unlike GetEnumName, for which you must use TypeInfo, there is a second,
alternative way to get the PTypeInfo argument. Since this function is used on objects, you can
use the ClassInfo property as this first argument. The second argument is a set of the property
types. Following is the declaration of the TTypeKind enumerated type, which defines the valid
values for this set:

  

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration,
  tkFloat, tkString, tkSet, tkClass, tkMethod, tkWChar, 
  tkLString, tkWString, tkVariant, tkArray, tkRecord,
  tkInterface);
  

This is the TTypeKinds declaration:

  

TTypeKinds = set of TTypeKind;

  

Other useful TTypeKind-related declarations in this unit include the following:

  

const
  tkAny = [Low(TTypeKind)..High(TTypeKind)];
  tkMethods = [tkMethod];
  tkProperties = tkAny - tkMethods - [tkUnknown];

  

The third argument of GetPropList is the PPropList that is populated with the property
information. Finally, GetPropList returns an integer representing the number of properties
returned in the PPropList.

  

The use of GetPropList is demonstrated in the PROPLIST project. The main form for this project
is shown in Figure 4. This form includes a ComboBox, whose contents are populated at run time
with the form’s OnCreate event handler with the names of the components appearing on the
form:

  

procedure TForm1.FormCreate(Sender: TObject);
var
  i: Integer;
begin
  ComboBox1.Items.Clear;
for i := 0 to Form1.ComponentCount -1 do
    ComboBox1.Items.Add(Form1.Components[i].Name);
  ComboBox1.Text := ’’;

4 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp



end;

  

Figure 4: The names of the published properties of a class selected in the Controls ComboBox
are displayed in a ListBox. These values are discovered using GetPropList.

  

The ListBox is populated with the property names of the object selected in the ComboBox. This
operation is performed from the ComboBox’s OnChange event handler, as shown in Figure 5.

  

procedure TForm1.ComboBox1Change(Sender: TObject);
var
  PropList: PPropList;
  i: Integer;
  CompName: string;
begin
  PropList := AllocMem(SizeOf(PropList^));
  i := 0;
  CompName := ComboBox1.Items[ComboBox1.ItemIndex];
  ListBox1.Items.Clear;
  try
    GetPropList(FindComponent(CompName).ClassInfo,
                tkProperties + [tkMethod], PropList);
    while (PropList^[i] <> nil) and
  (i < High(PropList^)) do begin
      ListBox1.Items.Add(PropList^[i].Name);
      Inc(i);
    end;
  finally
    FreeMem(PropList);
  end;
end;

Figure 5: The ListBox is populated with the property names of the object selected in the
ComboBox. This operation is performed from the ComboBox component’s OnChange event
handler.

  

This code is generic, in that the PTypeInfo is extracted using the ClassInfo property of a
component, a pointer to which is returned using the FindComponent method. FindComponent
returns a reference to an instance of an object based on a string, which in this case is the
selected component name in the ComboBox. Since FindComponent returns a TComponent
reference, and Name is a property of TComponent, it’s unnecessary in this example to cast the
reference returned by FindComponent to another class.

  YAQ<9 :<;�=E><>A@ ZN9 8 [KW?D CEPJ6JD 8 9 6 Q

Polymorphism permits you to treat objects that descend from different classes similarly. For
example, you can access the Name property of any component that descends from
TComponent using a TComponent reference. This is exactly what’s being done in the following
code, which comes from the PROPLIST example described earlier. It’s used to populate the

5 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp



ComboBox with a list of the form’s component names.

  

for i := 0 to Form1.ComponentCount -1 do
  ComboBox1.Items.Add(Form1.Components[i].Name);

  

However, the ability to treat these components polymorphically in this way is possible only when
the property (or method) being accessed is visible in the shared ancestor class. Name, in this
example, is declared published in TComponent, and therefore satisfies this requirement.

  

When two or more objects have the same property, but that property is not declared as public
or published in a common ancestor, you cannot access it polymorphically using a reference to
the ancestor. An example of a property such as this is Color. The Color property of both the
TEdit and TMemo classes is inherited from TControl. However, this property is declared as
protected in TControl. The Color property is re-declared as published in the TEdit and TMemo
class definitions, respectively. Since TEdit and TMemo do not share this property in an ancestor
class with sufficient visibility to be accessed at run time, it isn’t possible to treat these two
classes polymorphically with respect to the Color property. For example, the following code
generates a compiler error:

  

for i := 0 to Self.ControlCount - 1 do
  Self.Controls[i].Color := clTeal;

  

By comparison, the Hint property, which is declared as published in TControl, can be treated
polymorphically for any TControl descendant. For example, the following code compiles
properly:

  

for i := 0 to Self.ControlCount - 1 do
  Self.Controls[i].Hint := ’hi’ + IntToStr(i);

  

Fortunately, RTTI provides a mechanism that permits you to access published properties in a
generic fashion across classes, even when those classes do not share a visible inherited
version of the property. This mechanism is provided through a series of procedures with names
like SetOrdProp, SetStrProp, SetMethodProp, and so forth.

  

These set methods require a PPropInfo reference to the property. This reference is generated
by a call to GetPropInfo:

  

function GetPropInfo(TypeInfo: PTypeInfo; 
  const PropName: string): PPropInfo;

  

You then pass this PPropInfo reference to an appropriate set method. The following is
SetOrdProp, which can be used with any Integer or Longint value:

  

procedure SetOrdProp(Instance: TObject;
  PropInfo: PPropInfo; Value: Longint);

  

The use of GetPropInfo and SetOrdProp are demonstrated in the PROPINFO project. This
project includes a button with the following OnClick event handler attached to it:

6 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp



  

procedure TForm1.Button1Click(Sender: TObject);
var
  PropInfo: PPropInfo;
  i: Integer;
begin
if ColorDialog1.Execute then
    for i := 0 to Self.ControlCount - 1 do begin
      PropInfo := GetPropInfo(Self.Controls[i].ClassInfo,
                              ’Color’);
      if Assigned(PropInfo) then
        SetOrdProp(Self.Controls[i], PropInfo,
                   ColorDialog1.Color);
    end;
end;

  

When you click this button, the for loop iterates through all TControl descendants on the form.
For those controls that have PropInfo for a Color property, SetOrdProp is called to color the
control. Figure 6 shows how this form looks before clicking the button, and Figure 7 shows how
it looks after the button has been clicked.

  

Figure 6: The PropInfo main form when it’s first displayed.

  

Figure 7: The PropInfo main form after clicking the button labeled Color Controls and selecting
the color clBlue.

  

\ CE:JV<] H Q<9 CE:

RTTI is information about the published properties of your classes that the compiler stores in
your executable. Using the procedures and functions of the typinfo unit, you can extract this
information at run time. When used effectively, RTTI can simplify your code and reduce your
reliance on string constants that can be difficult to maintain.

  

7 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp



The projects referenced in this article are available for download. 

  

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi in
Depth [Osborne McGraw-Hill, 1996]. He is also a Contributing Editor of Delphi
Informant, and was a member of the Delphi Advisory Board for the 1997 Borland
Developers Conference. For information concerning Jensen Data Systems’ Delphi
consulting and training services, visit the Jensen Data Systems Web site at
http://idt.net/~jdsi. You can also reach Jensen Data Systems at (281) 359-3311, or via
e-mail at mailto:cjensen@compuserve.com.
  

  

 

 

 

 

 

 

Informant Communications Group, Inc. 
10519 E. Stockton Blvd., Suite 100 
Elk Grove, CA 95624-9703 
Phone: (916) 686-6610 • Fax: (916) 686-8497 

Copyright © 2000 Informant Communications Group. All Rights Reserved. • Site Use Agreement • Send
feedback to the Webmaster • Important information about privacy

8 von 8 4/12/00 9:26 PM

Run-time Type Information http://www.delphizine.com/features/1998/06/di199806cj_f/di199806cj_f.asp


